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Modern Robot Learning:
Hands-on Tutorial



Last Week...

Course Overview

Hands-on Tutorial

Robot Data Collection Policy Training Simulation for Robotics
* What is robot data? » Training Methods * Role of simulation
« What/how do we collect? » Policy Architectures » Designing environments
 How do we use it? * Policy Evaluation in simulation world

» Transfer to real-world

Course Overview



Last Week...

Hands-on Tutorial

Snheak Peak
Iterate to get best performance
v v v I
Teleoperate Robots Dataset Baliey Trainin Policy
in Virtual Reality Creation / Curation y 8 Evaluation

- -

Hands-on Tutorial Sneak Peak




Last Week...

Stark contrast

artificial intelligence of various sorts

will become an accepted
part of daily life by the year 2020

B stanford Law School

GPT-4 Passes the Bar Exam: What That Means for Atrtificial
Intelligence Tools in the Legal Profession | Stanford Law ...

CodeX~The Stanford Center for Legal Informatics and the legal technology company
Casetext recently announced what they called “a watershed...

Apr 19, 2023

(3§ PCMag

ChatGPT Passes Google Coding Interview for Level 3
Engineer With $183K Salary

Google fed coding interview questions to ChatGPT and, based off the Al's answers,

determined it would be hired for a level three engineering...

Feb 1, 2023

So --- We can make machines pass bar exams, but cannot make it move boxes?

Non-Physical vs Physical Intelligence




Last Week...

‘reasoning requires very little computation, but
sensorimotor and perception skills require

enormous computation resources” (1980)

Hans Moravec ’ s
[ Moravec's Paradox ] Steven Pinker

‘.- the main lesson of 35 years of research
is that the hard problems are easy

and the easy problems are hard -~ * (1994)

Slide from Pulkit Agrawal

Moravec’s Paradox



Last Week...

massive dataset

strategy: massive dataset with the right training method

right training method

Vision/Language

Scraped datasets

Next token (word)

Models from the web Prediction
Robot

? . _
Models : Action Prediction

Why data matters for generalist robot intelligence models




Last Week...

Road to Large-Scale Robot Dataset

What’s a Robot Dataset?
 Datarecorded by robot embodiments solving diverse tasks in
real-world.

* Anydata from any embodiments (including humans) that
contains useful knowledge about manipulation strategies.

Two types of robot datasets



Last Week...

Walking

Cooking

Shopping

Social interaction

Two types of robot datasets



Last Week...

Road to Large-Scale Robot Dataset

What’s a Robot Dataset?

 Datarecorded by robot embodiments solving diverse tasks in

real-world.

O'Neill, Abby, et al. "Open x- Khazatsky, Alexander, et al. Fang, Hao-Shu, et al. "RH20t: A robotic

embodiment: Robotic learning "DROID: A large-scale in-the-wild dataset for learning diverse skills in one-
datasets and rt-x robot manipulation dataset." arXiv shot." RSS 2023 Workshop on Learning
models." arXiv:2310.08864 (2023). preprint arXiv:2403.12945 (2024). for Task and Motion Planning. 2023.

Two types of robot datasets



Last Week...

4 Key Elements of
Teleoperation System

Robot Teleoperation

1. Designing command space for humans
2. Converting commands to robot actions

3. Designing feedback space for humans

4. Converting robot perceptions to human feedback

PN N
Human Commands Action Robot Actions °
> ‘Cocverter >
<€ Observation €
Feedback from Robot Carrodrtar World States d
el e

Most of the robot datasets are created by “teleoperation”




Today...

1. Designing command space for humans

4 Key Elements of | 2. Converting commands to robot actions

Teleoperation System | 3 pesigning feedback space for humans

4. Converting robot perceptions to human feedback

PN N
Human Commands Action Robot Actions .
> ‘Cogverter >
<€ Observation €
Feedback from Robot Sorrrdrter World States 0
| S ¢

Teleoperation System Case Studies: In-Depth Analysis



Today...

* Teleoperation System Case Studies: In-Depth Analysis

* Policy Training with Teleoperated Datasets
* Policy Architectures

* Policy Training Methods



Today...

* Teleoperation System Case Studies: In-Depth Analysis

* Policy Training with Teleoperated Datasets
* Policy Architectures

* Policy Training Methods

* Role of Simulation
* Real2Sim: Simulation Environment Design
e Sim2Real



Teleoperation System Case Studies: In-Depth Analysis

[A] Pollen Robotics @AVATAR XPrize [B] ALOHA

ANAS . .
avarar XPRIZE




-~ & -
1 NIMBaRO



Teleoperation System Case Studies: In-Depth Analysis

[B] ALOHA
Y e

R XPRIZE :
A‘v’ATAR ‘ AN

P P v iy
“ == AVATAR XPR'ZE |

PN e
Human Commands Action
> L _Converter Let’s try to analyze the design
<€ Observation choices each systems have made!
Feedback from Robot Converter

|



Teleoperation System Case Studies: In-Depth Analysis

[A] Pollen Robotics @AVATAR XPrize —_~

Human Commands Action Robot Actions
Converter

- -

Observation €
Feedback from Robot Converter World States

POLLEN ROBOTICS




Teleoperation System Case Studies: In-Depth Analysis

[A] Pollen Robotics @AVATAR XPrize —_~

Human Commands Action Robot Actions
Converter

- -

Observation €
Feedback from Robot Converter World States

POLLEN ROBOTICS




Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

—> What’s the main command interface of human controlling the robot?

N N
| Human Commandsl Action | Robot Actions | °
> ‘Cogverter >
<€ Observation €
Feedback from Robot Currrorter World States ﬂ
e hd

What exact part of the robot is the human controlling with each interface?




Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

What’s the main command interface of human controlling the robot?

PN e
| Human Commands | Action | Robot Actions |
> Converter >
< Observation € d
Feedback from Robot v, V— World States
sl

A\ 4
What exact part of the robot is the human controlling with each interface?

Joint Targets
for Robot Arm

Spatial SE(3) Pose I

= |nverse Kinematics
of Human Hand




Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

What’s the main command interface of human controlling the robot?

PN e
| Human Commands | Action | Robot Actions |
> Converter >
< Observation € d
Feedback from Robot v, V— World States
sl

A\ 4
What exact part of the robot is the human controlling with each interface?

Manual | ___ JointTargets

Button Press =— ) ,
Mapping for all Fingers




Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

What’s the main command interface of human controlling the robot?

PN e
| Human Commands | Action | Robot Actions |
> Converter >
< Observation € d
Feedback from Robot v, V— World States
sl

A\ 4
What exact part of the robot is the human controlling with each interface?

SE(3) Pose Inverse Joint Targets for

of Human Head Kinematics Robot’s Neck




Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

What’s the main command interface of human controlling the robot?

PN e
| Human Commands | Action | Robot Actions |
> Converter >
< Observation € d
Feedback from Robot v, V— World States
sl

A\ 4
What exact part of the robot is the human controlling with each interface?

Mobile Base

Differential Drive |/ Wheel Control

Translational _ Controller

Speed




Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

What’s the main command interface of human controlling the robot?

PN e
| Human Commands | Action | Robot Actions |
> Converter >
< Observation € d
Feedback from Robot v, V— World States
sl

A\ 4
What exact part of the robot is the human controlling with each interface?

SE(3) Pose Inverse Joint Targets for \

of Human Head Kinematics Robot’s Neck

Joint Targets

SE(3) Pose Inverse Kinematics — for Robot Arm

of Human Hand

Joint Targets
Button Press =— Manual Mapping — for all Fingers

Differential Drive Mobile Base

Translational __ Controller ~ Wheel Control

Speed




Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

Any expected issues?

SE(3) Pose Inverse Joint Targets for

of Human Head Kinematics Robot’s Neck

Joint Targets

SE(3)Pose  _ |nverse Kinematics — for Robot Arm

of Human Hand

Joint Targets
Button Press =— Manual Mapping — for all Fingers

Differential Drive Mobile Base

Translational __ Controller ~ Wheel Control

Speed




Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

P e N p—y
Human Commands Action Robot Actions °
> ‘Cogverter >
<€ Observation r d
I Feedback from Robot I Surreorter World States |
el hd

How does the state around the robot + state of the robot itself presented to the operator?

POINT SGORED!



Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

P e N p—y
Human Commands Action Robot Actions °
> ‘Cogverter >
<€ Observation r v
I Feedback from Robot I Surreorter World States |
el hd

How does the state around the robot + state of the robot itself presented to the operator?

POINT SCGORED!



Teleoperation System Case Studies: In-Depth Analysis
[A] Pollen Robotics @AVATAR XPrize

Expected Issues?

- PPOINT SCORED!







Teleoperation System Case Studies: In-Depth Analysis

[A] Pollen Robotics @AVATAR XPrize

il R X PRIZE

Things got complicated as it involved an
assumption of operator being “remotely located”



Teleoperation System Case Studies: In-Depth Analysis

[B] ALOHA

Things can be quite simpler
if we remove the “remote” assumption



Teleoperation System Case Studies: In-Depth Analysis
[B] ALOHA

Commander
Robot

W Follower
P --",’.. Robot



Teleoperation System Case Studies: In-Depth Analysis
[B] ALOHA

PN e
Human Commands Action Robot Actions *
> ‘Cogverter >
<€ Observation €
Feedback from Robot Sorrvdrier World States ﬂ

sl



Policy Training with Teleoperated Datasets

* Policy Architectures

* Policy Training Methods

Role of Simulation
* Real2Sim: Simulation Environment Design

e Sim2Real



Policy Training with Teleoperated Datasets

Which data are we recording as a dataset?

[A/ \B]

Human Commands Robot Actions

>

Human-Understandable
Representation of
Sensor Readings

Every Sensor Readings
with world/robot state info



Policy Training with Teleoperated Datasets

Which data are we recording as a dataset?

&B]

Robot Actions

>

Every Sensor Readings
with world/robot state info

D — {(SO’ aO’ Sl’ al, ...,Sn)}



Policy Training with Teleoperated Datasets

Every Sensor ___ —> Robot Actions a
Readings s

— ) EEn
{(SO Ao, 51, A1, ,Sn)}

Robot control becomes a supervised learning problem.



Policy Training with Teleoperated Datasets

Imitation Learning in general ...

[1] Behavior Cloning
= directly learning the mapping of the paired state/actions from
teleoperated datasets

[2] Inverse Optimal Control (Inverse RL)
= learning the rewards from the dataset, then run RL



Policy Training with Teleoperated Datasets

Imitation Learning in general ...

what we’re going to be focusing toda
[1] Behavior Cloning < RN g today
= directly learning the mapping of the paired state/actions from

teleoperated datasets

[2] Inverse Optimal Control (Inverse RL)
= learning the rewards from the dataset, then run RL



Policy Training with Teleoperated Datasets

World / Robot States _ —> Robot Actions
from Sensors

— {(So, ao, Sl' al, cer S‘I’L)}

max It (St,at)ND [log T[Q (als)]



Policy Training with Teleoperated Datasets

World / Robot States s —> Robot Actions
from Sensors

D = {(SO' AosS1, Ay -y Sn)} max T (St'at)"’D [log TTg (a‘S)]

Two main design decisions for policy training




Policy Training with Teleoperated Datasets

World / Robot States s —> Robot Actions
from Sensors

D = {(sy, ag,S1, A1, ) Sy) } mélx L (sp,a¢)~D [log g (als)]
Two main design decisions for policy training /

1. Engineering input / output space of neural network policy



Policy Training with Teleoperated Datasets

World / Robot States s —> Robot Actions
from Sensors

D = {(SO' AosS1, Ay -y Sn)} max T (St»at)"’D [log TTg (a‘S)]

Two main design decisions for policy training

1. Engineering input / output space of neural network policy

2. Engineering policy architectures



Policy Training with Teleoperated Datasets

1. Engineering input / output space of neural network policy

D = {(sg, ag, S1, A1, v, Sp)}

TypeA (m=1landn =1) Type B (m > 1lorn > 1)

m timesteps n timesteps
[ | I I
St — $_> At StrSt+1 " St+m—1 — — Ay, 0, Apyn—1

Notice any weird hats?




Policy Training with Teleoperated Datasets

1. Engineering input / output space of neural network policy

D = {(sg, ag, S1, A1, v, Sp)}

St = 9(St)

g: afunction that massages the state (combination of various
sensor readings) for better learnability

* Exclusion of certain sensor readings (i.e., joint pose vs end-
effector pose)

* Transformation of certain data types (i.e., SE(3))

* Dropping out certain modalities to prevent over-attention




Policy Training with Teleoperated Datasets

1. Engineering input / output space of neural network policy

D = {(sg, ag, S1, A1, v, Sp)}

TypeA (m=1andn =1) TypeB (m>1lorn>1)
m timesteps n timesteps
[ | [ I
St &ﬁ At StrSt+10 " St4m—-1 — — Qg A1

Any guesses for an ideal combination of m and n?




Policy Training with Teleoperated Datasets

1. Engineering input / output space of neural network policy

TypeA (m=1andn =1) TypeB (m>1lorn>1)
m timesteps n timesteps
) | | | |
ot $_' At StrSt+10 " St4m-1 — — Qg Apyn—1

Any guesses for an ideal combination of m and n?

Prosand Consofm =1 Prosand Consofn > 1
5 Policy faces less out-of-distribution inputs 5 Less prone to compounding errors*
5 Enables Reactive / Failure recovery 5 Less vulnerable to disturbances

ors
E;' \Lﬂllt{modal output distributions &7 Less reactive / jerky behaviors



20

Policy Training with Teleoperated |

H
1. Engineering input / output space of s
S
TypeA (m=1andn =1) TypeB (m>1lor ¢ .
mtimeste 3
[
>t $_> At §t’§t+1i'"1~i 12
ﬂ f
) 1 10 100 200
Any guesses for an ideal cc  fully-closed-loop n fully-open-ic
— Qurs BC-ConvMLP VINN
Prosand Consofm =1 Prosand Consofn > 1
5 Policy faces less out-of-distribution inputs 5 Less prone to compounding errors*
5 Enables Reactive / Failure recovery 5 Less vulnerable to disturbances

ors
E;' \Lﬂllt{modal output distributions &7 Less reactive / jerky behaviors



Policy Training with Teleoperated Datasets

1. Engineering input / output space of neural network policy

TypeA (m=1andn =1) TypeB (m>1lorn>1)
m timesteps n timesteps
) | | | |
ot $_' At StrSt+10 " St4m-1 — — Qg Apyn—1

Any guesses for an ideal combination of m and n?

Prosand Consofm =1 Prosand Consofn > 1
5 Policy faces less out-of-distribution inputs 5 Less prone to compounding errors*
5 Enables Reactive / Failure recovery 5 Less vulnerable to disturbances

Eﬁ'lﬁ\aﬁg%odal output distributions &7 Less reactive / jerky behaviors



Policy Training with Teleoperated Datasets




Policy Training with Teleoperated Datasets




Policy Training with Teleoperated Datasets
2. Engineering policy architectures

Diffusion Policy LSTM-GMM BET IBC

Policy architectures does matter



Policy Training with Teleoperated Datasets

2. Engineering policy architectures

Policy architectures

Difference in mathematical
formulations used to
generate action predictions

(i.e., diffusion vs VAE vs GAN)

VS

Neural Network architectures

Difference in how the input
data is encoded and decoded
to generate predictions

(i.e., MLP vs Transformers)



Policy Training with Teleoperated Datasets
2. Engineering policy architectures

Variational Autoencoders (VAES)

We introduce an inference model q(z|x)
qs(2|x) = N (pe(x), By (x))

* This allows us to efficiently optimize the log-
likelihood, through the evidence lower  (QEdF===r==reeeeeees
bound (ELBO).

X, Z
log pg.s(x) > ELBO(x) = Eq,(zlx) [log Pl )}

qs(2|x)

* We optimize g(z|x) and p(x,z) jointly w.r.t.

* Bound is tight with the right g(z|x)

Pros: cheap compute
cost; one-step prediction
Cons: cannot model
extreme multimodality

ELBO Inference model Generative model
a(z|x) p(x,2)

Denoising Diffusion Models
Learning to generate by denoising

Forward diffusion process that gradually adds noise to input

Forward diffusion process (fixed)

Reverse denoising process that learns to generate data by denoising
Data : 1 R
J s,
Reverse denoising process (general

© Ruiqi Gao



Policy Training with Teleoperated Datasets

2. Engineering

* Pros: powerful
expressivity

« Cons: expensive
compute; multi-step
inference required

policy architectures

Variational Autoencoders (VAESs)

* We introduce an inference model Iq[ \VJ

= This allows us to efficiently optimize the log-
likelihood, hmghh e evidence lower
bound (ELBO).

log po,(x) 2 ( ‘ ]

* We optimize q(z|x) and pix,2) jointly w.r.t.
ELBO Inference model  Generative model
alzk) Plx.2)

= Bound is tight with the right g(zlx)

Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

Noise

© Ruiqi Gao







Andy Zeng's MIT CSL Seminar, April 4, 2022

"Dirty Laundry"

Symptoms of a larger problem

The not-so-secret recipe to making a rockstar behavior cloning demo on real robots

Step 1. collect your own "expert" data and don't trust anyone else to make it perfect
Step 2. avoid "no action" data so your policy doesn't just sit there
Step 3. It's not working? Collect more data until "extrapolation” becomes "interpolation”

Step 4. Train and test on the same day because your setup might change tomorrow

Mostly because we don't have a lot of data

© Andy Zeng’s slide from Russ Tedrake’s slide



Role of Simulation

* Real2Sim: Simulation Environment Design

e Sim2Real



Role of Simulation: Cost of Real-world Teleop Data Collection

Option B: Setup fake
environments for each
robot in the lab space.

Buy bunch of robots to teleoperate Physically Setup Environments for Tasks
.’? o . . — Optiorll AI‘: Move thedro:ot to y
lili YR (W \l ll actual places around the world,
(®) y' y' \" \" i.e., homes, offices, factories.
i’ -I\ RN lﬂ
Hire On-Site Teleoperators [ v Vel | Y Eel

o e N O
fo g § o
[}. Yo Y

[@on ﬁ@‘ Endless repetiti i
petition until
= @ C‘—\l @ policy training team say “that’s enough, go home.”
v

Teleoperate and complete the task Reset Environment after task completion

<




Role of Simulation: Cost of Real-world Teleop Data Collection

Can this really get us to the data scale we need?



Role of Simulation

Collecting Robot
Data in Virtual World



EETTTYY O

P~




Role of Simulation

Demos collected in simulation supports
last-mile performance improvement through RL finetuning.

Imitation only With a sprinkle of reactivity

Success: 0/ 0 Success: 1/ 1



Role of Simulation

Massively parallelizable simulation
with randomizable parameters

Access to
Oracle (Privileged) States*

States that are hard to retrieve from
real-world sensors, for instance:

* Object Poses/ Velocities
 Contact Force/ Pairs
e etc...



Role of Simulation with a small cost

Simulation Scene Design Sim2Real Pipeline
Generating realistic enough Transferring policies trained with
simulation scenes that captures the simulated experiences back to real-

essence of real-world environments world evaluation environment.



Role of Simulation with a small cost

Desired (Target)
Environment / Task

!

Simulation __ Simulation __ Data — > Data Policy

Scene Design Environment Generation Training

Policy in Sim

|

SiTnZF?eal Regl—world
Pipeline Policy



Role of Simulation with a small cost

Desired (Target)

Environment / Task Integrated Loop: RL
Simulation __ Simulation _ Data Data Policy
Scene Design Environment Generation Training

Policy in Sim

|

SiTnZF?eal Regl—world
Pipeline Policy



Environments you will

Role of Simulation with a small cost experience during

tutorial session

Simulation Scene Design : Real2Sim

AN %

Improbable A

¥ WEiRD

Reconciling Reality through Simulation:
A Real-to-Sim-to-Real Approach for
Robust Manipulation

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan,
Tao Chen, Abhishek Gupta®, Pulkit Agrawal*

ar W




Role of Simulation with a small cost
Simulation Scene Design : Generative Simulation

& t*

Pick up the mug Turn the faucet Turn on the switch Press the tip of sanitiser Close the table drawer Open the safe door Open the dishwasher door
et Btise disies Clesa the fight ipper Open the top right Close the left door Open the left door Close the top drawer Close the bottom drawer Close the upper drawer
door of the cabinet of the cabinet of the cabinet of the cabinet of the cabinet of the table

of the cabinet drawer of the table

e

Ofsen the imkowave dooe Open the dishwasher door Close the microwave door Open the oven door Close the dishwasher door Close the table drawer Open the dishwasher door Close the table drawer

Put the veggie in left door Close the right upper Close the left door Close the middle drawer Close the left door Open the left door Put the tennis ball in
f f the cabinet Open the dishwasher door 2
of the refrigerator drawer of the table o t of the cabinet of the cabinet of the refrigerator left door of the cabinet


https://gen2sim.github.io/

Role of Simulation with a small cost

Desired (Target)

Environment / Task Integrated Loop: RL
Simulation __ Simulation _ Data Data Policy
Scene Design Environment Generation Training

Policy in Sim

|

SlrnZF?eal Regl—world
Pipeline Policy



Role of Simulation with a small cost

Sim2Real Pipeline: Two major Sim2Real gaps to deal with

Contact Dynamics

Psim (St+1 |St; g, H! TI)
How physics engine models contacts vs - preal(5t+1|5t' at)

how our actual world models contacts

Solver Parameters 0 1. System Identification (SysID):

| Find the right 8, n that best

S . . matches Preal

At ::{ hyslesIENEINE Psim J_> St+1 2. Domain Randomization (DR):
T 6 ~ p,(0)

Physics Parameters n n~p2(n)



Role of Simulation with a small cost

Sim2Real Pipeline: Two major Sim2Real gaps to deal with

Chen, Tao, et al. "Visual dexterity: In-hand reorientation of novel and complex object shapes." Science
Robotics 8.84 (2023): eadc9244



Role of Simulation with a small cost

Sim2Real Pipeline: Two major Sim2Real gaps to deal with

Visual Rendering ' = Y enderer (St 0)

I{eal

How physics engine renders camera vs — l/)real_cam (St)

output of actual camera models

1. System ldentification (SysID):
Find the right 8, n that best
matches I1¢3!

|

St 4{ Rendering Engine ]—> I, 2. Domain Randomization (DR):
I 6 ~ p,1(6)

Lighting Parameters n n -~ P2(n)

Camera Parameters 6




Role of Simulation with a small cost

Sim2Real Pipeline: Two major Sim2Real gaps to deal with




This Wednesday

Haoshu Fang

Policy Learning with
alternative datasets
without teleoperation!

@) 6

Fill out a survey!
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