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Let’s try to analyze the design 
choices each systems have made!
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Things got complicated as it involved an 
assumption of operator being “remotely located”
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Things can be quite simpler 
if we remove the “remote” assumption
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Robot control becomes a supervised learning problem. 

Imitation Learning in general …

[1]   Behavior Cloning   
         = directly learning the mapping of the paired state/actions from 
             teleoperated datasets

[2]   Inverse Optimal Control  (Inverse RL) 
         = learning the rewards from the dataset, then run RL

what we’re going to be focusing today
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1. Engineering input / output space of neural network policy

Ƹ𝑠𝑡 𝑎𝑡 Ƹ𝑠𝑡 , Ƹ𝑠𝑡+1, ⋯ , Ƹ𝑠𝑡+𝑚−1 𝑎𝑡 , ⋯ , 𝑎𝑡+𝑛−1

𝑚 timesteps 𝑛 timesteps

Type A   (𝑚 = 1 and 𝑛 = 1) Type B   (𝑚 > 1 or 𝑛 > 1)
Ƹ𝑠𝑡 = 𝒈(𝑠𝑡)

𝒈: a function that massages the state (combination of various 
sensor readings) for better learnability 

• Exclusion of certain sensor readings (i.e., joint pose vs end-
effector pose) 

• Transformation of certain data types (i.e., SE(3))
• Dropping out certain modalities to prevent over-attention
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Policy Training with Teleoperated Datasets
2. Engineering policy architectures

Policy architectures vs Neural Network architectures

Difference in mathematical 
formulations used to 

generate action predictions 

(i.e., diffusion vs VAE vs GAN)

Difference in how the input 
data is encoded and decoded 

to generate predictions 

(i.e., MLP vs Transformers)



Policy Training with Teleoperated Datasets
2. Engineering policy architectures

© Ruiqi Gao

• Pros:  cheap compute 
cost; one-step prediction

• Cons:  cannot model 
extreme multimodality 



Policy Training with Teleoperated Datasets
2. Engineering policy architectures

© Ruiqi Gao

• Pros:  powerful 
expressivity

• Cons:  expensive 
compute;  multi-step 
inference required
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Teleoperate and complete the task

Endless repetition until 
policy training team say “that’s enough, go home.”

…

Buy bunch of robots to teleoperate Physically Setup Environments for Tasks

Option A:  Move the robot to 
actual places around the world, 
i.e., homes, offices, factories. 

Option B:  Setup fake 
environments for each 
robot in the lab space.

Hire On-Site Teleoperators

Reset Environment after task completion

Role of Simulation:  Cost of Real-world Teleop Data Collection



Teleoperate and complete the task

Endless repetition until 
policy training team say “that’s enough, go home.”

…

Buy bunch of robots to teleoperate Physically Setup Environments for Tasks

Option A:  Move the robot to 
actual places around the world, 
i.e., homes, offices, factories. 

Option B:  Setup fake 
environments for each 
robot in the lab space.

Hire On-Site Teleoperators

Reset Environment after task completion

Role of Simulation:  Cost of Real-world Teleop Data Collection

Can this really get us to the data scale we need? 



Learning from
Human Videos

Passive Data
with wearables

Collecting Robot 
Data in Virtual World

Role of Simulation





Demos collected in simulation supports
last-mile performance improvement through RL finetuning. 

Role of Simulation



Role of Simulation

Massively parallelizable simulation
with randomizable parameters

Access to 
Oracle (Privileged) States*

States that are hard to retrieve from 
real-world sensors, for instance: 

• Object Poses / Velocities 
• Contact Force / Pairs
• etc…



Role of Simulation with a small cost

Simulation Scene Design

Generating realistic enough 
simulation scenes that captures the 
essence of real-world environments

Sim2Real Pipeline

Transferring policies trained with 
simulated experiences back to real-
world evaluation environment. 
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Simulation
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Generation Data

Policy 
Training

Policy in Sim

Real-world
Policy

Integrated Loop: RL 



Role of Simulation
Simulation Scene Design

with a small cost
: Real2Sim

Environments you will 
experience during 

tutorial session 



Role of Simulation
Simulation Scene Design

with a small cost
: Generative Simulation

https://gen2sim.github.io/ 

https://gen2sim.github.io/


Role of Simulation with a small cost

Simulation 
Scene Design

Sim2Real 
Pipeline

Desired (Target) 
Environment  / Task

Simulation
Environment

Data 
Generation Data

Policy 
Training

Policy in Sim

Real-world
Policy

Integrated Loop: RL 



Role of Simulation
Sim2Real Pipeline :   Two major Sim2Real gaps to deal with

Contact Dynamics

How physics engine models contacts vs 
how our actual world models contacts

Physics Engine 𝑝sim

Solver Parameters 𝜃

Physics Parameters 𝜂

𝑠𝑡
𝑎𝑡

𝑠𝑡+1

𝒑𝐬𝐢𝐦 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡; 𝜃, 𝜂
≉  𝒑𝐫𝐞𝐚𝐥 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡

1. System Identification (SysID):  
Find the right 𝜃, 𝜂 that best 
matches 𝑝real 

2. Domain Randomization (DR): 
𝜃 ∼ 𝑝1 𝜃
𝜂 ∼ 𝑝2(𝜂)

with a small cost



Role of Simulation
Sim2Real Pipeline :   Two major Sim2Real gaps to deal with

with a small cost

Chen, Tao, et al. "Visual dexterity: In-hand reorientation of novel and complex object shapes." Science 
Robotics 8.84 (2023): eadc9244



Role of Simulation
Sim2Real Pipeline :   Two major Sim2Real gaps to deal with

Visual Rendering

How physics engine renders camera vs 
output of actual camera models

with a small cost

Rendering Engine 𝜓

Camera Parameters 𝜃

𝒔𝑡 𝐈𝑡

𝐈𝑡
sim = 𝜓renderer(𝒔𝑡; 𝜃)

1. System Identification (SysID):  
Find the right 𝜃, 𝜂 that best 
matches 𝐈𝑡

real

2. Domain Randomization (DR): 
𝜃 ∼ 𝑝1 𝜃
𝜂 ∼ 𝑝2(𝜂)

𝐈𝑡
real = 𝜓real_cam(𝒔𝑡)

Lighting Parameters 𝜂



Role of Simulation
Sim2Real Pipeline :   Two major Sim2Real gaps to deal with

with a small cost



This Wednesday

Haoshu Fang

Policy Learning with 
alternative datasets 
without teleoperation! 

Fill out a survey!
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